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1 Introduction

The conditional convergence hypothesis plays a central role in the empirical study of
economic growth. The starting point is to model countries as each converging to their
own balanced growth path, where each country’s initial distance from the growth path
will influence its growth rate. Countries a long way below their steady-state path
will show relatively fast growth, while countries a long way above their steady-state
position will grow relatively slowly, and perhaps even see reductions in GDP per worker.
In general, if we control for the determinants of the level of the growth path, countries
that are relatively poor will grow more quickly. This implies convergence within groups
of countries that look alike in terms of their steady-state determinants.

For individual countries, the conditional convergence hypothesis implies that out-
put per worker will follow a partial adjustment model. Models of economic growth
add to this by making quantitative predictions about the speed at which economies
will converge towards the long-run equilibrium, and testing these predictions may be
informative about key structural parameters. The speed of convergence also tells us
whether transitional dynamics or steady-state behaviour play the dominant role in ob-
served patterns of growth rates. For economies that take a long time to converge to
their steady-state, transitional dynamics are important, while economies that converge
rapidly will often be close to their steady-state positions, and differences in growth
might then be attributed to steady-states that are changing over time.

Even if the rate of convergence is not the focus of interest, the partial adjustment
model has implications for cross-section and panel data studies. Since the key studies
of Baumol (1986), Barro (1991), Barro and Sala-i-Martin (1992), and Mankiw, Romer,
and Weil (1992), empirical models of growth have routinely controlled for the initial
level of GDP per capita or GDP per worker. More recent papers that explicitly draw
on the Solow model include Islam (1995), Caselli, Esquivel and Lefort (1996), Bernanke
and Gurkaynak (2001), Masanjala and Papageorgiou (2004) and Beaudry, Collard and
Green (2005).

The approach taken in these papers is often justified by log-linearization of the
equation for output that arises in the Solow model. Hence, the Solow model remains
the central organizing framework for empirical research on economic growth. If this
literature can be said to have a structural model, this is the strongest candidate. For
all these reasons, it is especially interesting to study convergence behaviour within this
particular model, including the accuracy of the underlying approximation.

Our analysis makes two main contributions. The first is to provide a systematic
treatment of several aspects of convergence behaviour in the Solow model. This in-
cludes the definition of the speed of convergence, which becomes especially important
when the economy is away from the steady-state. We also study the accuracy of log-
linearization for the Cobb-Douglas case. In principle the use of higher-order Taylor
series approximations should improve accuracy, but in practice this does not always
preserve the qualitative properties of the governing dynamic equation.

Our second contribution is to highlight an empirical implication of the Solow model
which has not previously been analyzed or tested. The paper shows that the rate
of convergence is predicted to be faster for economies converging to their steady-state
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paths from below than for economies converging from above. This is of interest because
Cho and Graham (1996) showed empirically that, under standard assumptions, a high
proportion of countries are found to have been converging to their growth paths from
above over the period 1960-1985. This could arise if, for example, investment rates
have declined over time in some countries.

To understand the result in more detail, we consider the Taylor series approximation
that is used in the empirical literature. The approximation leads to an equation for
output growth in which the coefficient on initial income is likely to be broadly similar
across countries, and this helps to justify the use of initial income in growth regressions.
But if countries are not in the neighbourhood of the steady-state, the predictions of
the Solow model are more complex.

In order to show this, we first note that, when relating growth over a specific time
period to the initial level of income, the coefficient on initial income can be written as
an integral of a (suitably defined) time-varying convergence rate. Since the convergence
rate varies with an economy’s distance from its steady-state, so does this integral. This
implies that the coefficient on initial income will be heterogeneous across economies
when some are far from their steady-state positions, contrary to the usual assumption
in the empirical literature.

By explicitly analysing convergence behaviour away from the steady-state, and in
particular the time variation in convergence speeds, we derive the testable implication
that rates of convergence are slower for countries converging from above. A corollary
is that, for these countries, the coefficient on initial income will be lower in absolute
terms, reflecting slower convergence. This specific form of parameter heterogeneity can
be tested. In the empirical analysis that concludes the paper, we use the Cho and
Graham (1996) method for identifying whether convergence in each country is from
above or below. We then find that convergence from above is indeed slower on average.

The remainder of the paper is structured as follows. The next section will discuss
the relationship between our paper and previous work on transitional dynamics and
convergence speeds in standard growth models. Section 3 then reviews the Solow model
and defines notation. Section 4 provides a systematic treatment of alternative measures
of the speed of convergence. In section 5, we use the definitions to study convergence
behaviour in more detail. In section 6 we derive some empirical implications of our
analysis. These are then tested in section 7.

2 Previous literature

In this section, we briefly review the relationship of our paper to previous work. All our
analysis is based on the Solow model with an exogenously fixed saving rate. In Ramsey
growth models, with saving determined by intertemporal optimization, convergence
speeds in the vicinity of the steady-state may be influenced by preferences as well
as technology parameters. Some authors have considered transitional dynamics and
convergence speeds within such models. Notable contributions include Mulligan and
Sala-i-Martin (1993) and Ortigueira and Santos (1997), who focus on two-sector models
of endogenous growth.

Our paper differs in that we emphasize the Solow model. From a purely theoret-
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ical point of view, this is arguably less interesting than the broader class of models
considered elsewhere. But the Solow model has considerable interest as the organizing
framework for many empirical studies. For example, according to the Social Sciences
Citation Index, the classic analysis of the Solow model by Mankiw, Romer and Weil
(1992) had been cited 777 times by January 2007, often by papers that implement the
model empirically.

Hence, it becomes especially interesting to study the accuracy of the linear approx-
imations that are used in the literature. Moreover, our work also differs from Mulligan
and Sala-i-Martin (1993) and Ortigueira and Santos (1997) in that we derive some new
empirical implications of the Solow model. These implications are relatively easy to
test, and we will show that they have some support in the data.

The paper closest to ours is that of Reiss (2000). We follow his analysis in studying
the accuracy of the linear approximations that are used in the study of convergence,
and in investigating the behaviour of the Solow model when away from the steady-state.
When the economy is not in the vicinity of the steady-state, the precise definition of
the rate of convergence becomes important, and new considerations become relevant.
For example, working on the Cobb-Douglas case, Reiss shows that output and capital
converge at different rates, when using certain measures of the convergence rate.

Relative to the contribution of Reiss (2000), we consider the measurement of rates
of convergence in more detail. We ask whether significant gains are obtained by adding
more terms to the widely used first-order Taylor expansions near the steady-state.
Above all, we emphasize the role of convergence from above, both theoretically and
empirically. As noted in the introduction, this choice of emphasis is strongly influ-
enced by Cho and Graham (1996), who found that convergence from above may be
surprisingly common in practice.

Finally, we remark that the material contained in section 3 is well-known, presented
here because it forms the basis of subsequent analyses. The material in section 4 is
also standard, but the approach employed here to derive the linear expansions and
the speed-of-convergence definitions is relatively systematic. The rest of the material,
consisting of sections 5, 6 and 7, and the appendix represent the original contributions
of the paper.

3 The Solow model

The Solow model of economic growth forms the basis of the work presented in this
article. In this section we derive the model and present its main results, first for
a general production function and then for the case of a Cobb-Douglas production
function.

We consider a closed economy in which output Y (t) is generated according to the
production function

Y = F (K, AL), (1)

where K(t), capital, L(t), labour, and A(t), the level of technology, are all functions of
time. The function F is assumed to be at least twice differentiable, satisfies the Inada
conditions, has positive, diminishing returns to each of its arguments, and constant
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returns to scale. The rates of saving, population growth, and technological progress are
taken as exogenous, and L and A are assumed to grow at constant rates according to

L̇ = nL, (2)

Ȧ = gA, (3)

where L̇ = dL/dt. Capital, however, is taken to accumulate endogenously according to

K̇ = sY − δK, (4)

where s is the rate of saving and δ is the rate of capital depreciation. The input variables
of the model are capital and labour, which are assumed to be paid their marginal
products. It is convenient to introduce the variables y = Y/(AL) and k = K/(AL),
where AL is a measure of the effective units of labour. The equations (1) and (4)
become

y = f(k), (5)

k̇ = sf(k)− (n + g + δ)k, (6)

respectively. The equations (5) and (6) are the fundamental equations of the Solow
model and they describe the evolution of y(t) and k(t) in time.1 Equation (6) says the
rate of change of k is given by actual investment per unit of effective labour, sf(k),
less (n + g + δ)k, the amount of investment required to keep k at its existing level.2

The amount of investment required to keep k from falling due to depreciation is δk.

This amount of investment is not enough to keep k constant though, because effective
labour is also growing

(
at the rate (n+ g)

)
. Thus the total investment required to keep

k at its existing level is (n + g + δ)k.

When sf(k) exceeds (n+g + δ)k, the capital per effective unit of labour grows, and
when sf(k) is lower than (n+ g + δ)k, the capital per effective unit of labour falls. The
point at which

sf
(
k̂
)

= (n + g + δ)k̂, (7)

represents the steady-state level at which k̇ = 0.3 Note that since ẏ = k̇f ′(k) and
f ′(k) is finite and vanishes nowhere in 0 < k < ∞, at the steady-state ẏ = 0 as well.
The situation is illustrated in figure 1 which shows a phase diagram where k̇ is plotted
against k. It shows that if the initial level of k is less than k̂, then k(t) grows towards k̂.

If it is initially greater than k̂, then it decays towards k̂. Thus, regardless of its initial
position, the economy always evolves towards the steady-state k = k̂, demonstrating
that k = k̂ is a stable equilibrium. In the steady-state, K = ALk̂ and, since k̂ is
constant, the growth rate of K (and Y ) is given by (n + g). Also, with K/L = Ak̂ and
Y/L = Aŷ, the growth rate of both output per capita Y/L and capital per capita K/L

is thus g − demonstrating that, on the balanced growth path, the growth rate of per
capita variables is determined only by the rate of technological progress.

1Note that f(k) ≡ F
(
k, 1

)
and, since F satisfies the Inada conditions, lim

k→0
f ′(k) = ∞ and

lim
k→∞

f ′(k) = 0.
2Note that in this context, it has been assumed that saving equals investment.
3We use the hat to denote steady-state variables.
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k

k̇(t)

k = k̂

Slope of this line = k̇/k = γk

Directed length of this line = k̇

Figure 1: Phase diagram showing how k̇ varies with k for a typical neoclassical production
function. The horizontal arrows indicate the direction in which the economy evolves.

From (7), the steady-state level of the economy is determined by the exogenous
parameters s, n, g and δ. Economies for which these parameters are equal (that is,
economies that are structurally similar) will have the same steady-state level. We anal-
yse the effects of changes in these parameters on the steady-state level k̂. Differentiating
(7) with respect to s gives

f
(
k̂
)

+ s
∂k̂

∂s
f ′
(
k̂
)

= (n + g + δ)
∂k̂

∂s
.

Then, rearranging using (7) and noting that k̂f ′
(
k̂
)
/f
(
k̂
)

is the elasticity of output
with respect to capital at steady-state, equal to capital’s share of output, and denoted
α
(
k̂
)

here, gives

∂ log k̂

∂ log s
=

1

1− α
(
k̂
) . (8)

Since 0 < α
(
k̂
)

< 1, this expression is always positive. In fact, as α increases from
zero to one, the absolute value of (8) increases from 1 to ∞. Thus there is a positive
functional dependence of k̂ on s, indicating that an increase in the saving rate, all other
parameters kept fixed, leads to a higher steady-state level.

It can also be shown that

∂ log k̂

∂ log n
=

−n(
1− α

(
k̂
))

(n + g + δ)
< 0. (9)

In a similar manner, the elasticities of k̂ with respect to g and δ are also negative.
Therefore, an increase in any of the parameters n, g or δ leads to a lower steady-state
level. In the case of an increase in the rate of depreciation, for example, the steady-state
level falls because more savings have to go into the replacement of worn-out capital.
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K

γk

K = 1

−(n + g + δ)

Figure 2: The growth rate γk plotted as a function of K. The arrows show the direction and
relative magnitude of the growth rate.

Next, to gain more insight into the behaviour of the economy as it evolves towards
the steady-state, we analyse the growth rate of k, denoted γk. From (6) and through
the use of (7), this can be expressed as

γk(t) =
d
dt

[
ln k(t)

]
=

sf(k)
k

− (n + g + δ)

= (n + g + δ)
[
Y
K
− 1
]

, (10)

where Y = y/ŷ and K = k/k̂. Notice that γk(t) is related to γy(t) through α(k), as
follows:

γy(t) =
d
dt

[
ln y(t)

]
=

kf ′(k)
f(k)

[
sf(k)

k
− (n + g + δ)

]
= γk(t)α(k). (11)

Since 0 < α(k) < 1, the growth rate γy(t) will be a fraction of γk(t), but the two will
always bear the same sign. These expressions indicate that in the steady-state where
Y = K = 1, the growth rates of k(t) and y(t) vanish, as expected. Away from the
steady-state, using L’Hopital’s rule and the Inada conditions, yields lim

k→0
(Y/K) = ∞

and lim
k→∞

(Y/K) = 0. Thus for economies with k < k̂, the growth rate is positive and

increases with distance from k = k̂. In the limit lim
k→0

γk = ∞. Above k = k̂, growth

rates are negative, ranging from γk = 0 when k = k̂ to γk = −(n + g + δ) in the limit
k →∞. A graphical illustration of γk is shown in figures 1 and 2.

The form of γk means that, for two structurally similar economies which differ only
in their initial endowments of k, both starting with K < 1, the poor economy will have
a higher growth rate than the rich one. The poor economy will have a higher growth
rate so long as it remains poorer than the other economy. The growth rates equalise
only when the poor economy catches up with the initially rich economy. For K > 1,

richer economies are shown to decay faster than (and hence converge to) poor economies
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nearer to the steady-state. Thus, the Solow model predicts that structurally similar
economies converge in the long run. The hypothesis that poor economies generally grow
faster than (and hence converge to) rich ones is called absolute convergence. Empirical
evidence on growth experiences of a broad selection of countries (e.g. Barro and Sala-
i-Martin 2004) shows no correlation between initial output levels and subsequent rates
of growth. In this case, then, the hypothesis of absolute convergence appears to be
rejected by the data. The explanation for this is the presence of heterogeneities across
these countries whereas the notion of absolute convergence is based on the assumption
that all parameters, except the initial levels of capital, are identical. We note that a
potential weakness of these empirical studies is the lack of a wide range of reliable data
over long periods. Consequently, to avoid the problem of “selection bias”, the studies
use data over time periods that may not be sufficiently long.

Empirical studies of growth rates of more homogeneous groups of economies (e.g.
Barro and Sala-i-Martin 2004, Sala-i-Martin 1996) show significant agreement with the
hypothesis of absolute convergence. Data on the OECD economies (from 1960 to 1990),
states of the United States (from 1880 to 1992), and the Japanese prefectures (from
1930 to 1990) all show that poor regions (states) generally grow faster per capita than
rich ones. The convergence exhibited by these data occurs without conditioning on
any other characteristics of the economies besides the initial level of per capita product
or output, and hence it is absolute. This is consistent with the model because these
economies may have essentially similar characteristics like technologies, tastes, and
political institutions. Because of the relatively homogeneous conditions, the economies
will have similar steady-state levels, and hence converge in the long-run.

For the case where heterogeneities across economies are significant, the differences
in the parameters of the economies imply that they will have different steady-states.
A graphical representation of the form shown in figure 2 would have multiple growth
curves along which each of the economies traverse. In this situation, the notion of
conditional convergence asserts that an economy’s rate of growth is proportional to the
distance from its own steady-state level. Thus, the growth rate of a poor economy may
be lower than that of a rich economy if the poor economy is proportionately closer to
its steady-state than the rich one.

Cobb-Douglas Production Function

The most widely used production function, which satisfies the properties of a neoclas-
sical production function and may provide a reasonable description of real economies,
is Cobb-Douglas. It is instructive to study the Solow model characterised by a Cobb-
Douglas production function because, in this case, an exact analytical solution can be
found, which greatly enhances comparative analysis. The formula (1) is thus replaced
by

Y = Kα(AL)1−α, 0 < α < 1. (12)
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The system of equations that govern the evolution of capital and output per effective
unit of labour becomes

y = kα, (13)

k̇ = skα − (n + g + δ)k, (14)

ẏ = αsy2− 1
α − α(n + g + δ)y. (15)

Exact analytical solutions of the evolution equations (14) and (15) can be found, and
they are given by

k(t) =
[

s

(n + g + δ)

(
1− e−λt

)
+ k1−α

0 e−λt

] 1
1−α

, (16)

y(t) =
[

s

(n + g + δ)

(
1− e−λt

)
+ k1−α

0 e−λt

] α
1−α

, (17)

respectively, where λ = (1− α)(n + g + δ) and k0 = k(0) is the initial level of capital.4

These expressions show that the time-dependent components of k(t) and y(t) decay
exponentially with time, and hence the economy approaches a steady-state level in the
long-run, given by

k̂ =
[

s

(n + g + δ)

] 1
1−α

, (18)

ŷ =
[

s

(n + g + δ)

] α
1−α

. (19)

The terms that decay include those that depend on the initial level of capital k0.

Hence the steady-state level of the economy is independent of its initial position, but
is determined by the exogenous parameters s, n, g and δ.

As the economy approaches steady-state, the growth rate of capital is given by

γk =
k̇

k
= (n + g + δ)

(
k̂1−α − k1−α

0

)[
k(t)

]α−1
e−λt

= (n + g + δ)
(
1−K1−α

0

)
Kα−1e−λt. (20)

Since the terms (n + g + δ), k(t) and eλt are all positive, the sign of γk is determined
by whether k0 is less or greater than k̂. If k0 < k̂, then γk is positive implying growth
while for k0 > k̂, γk is negative and k decays in time. The absolute magnitude of the
initial growth rate, given by

|γk(0)| = (n + g + δ)
∣∣∣Kα−1

0 − 1
∣∣∣,

is proportional to the distance of K0 from 1, taking small values when K0 is in the
neighbourhood of 1 and large values when K0 is far from 1. With the exponent (α −
1) < 0, when K0 → 0 we have γk(0) → ∞, and as K0 → ∞, the initial growth rate

4A full solution of (14), previously obtained by, for example, Williams and Crouch (1972), is pre-

sented in the appendix.
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γk(0) → −(n + g + δ). The magnitude of γk at subsequent times then decreases to
zero because the term e−λt, equal to one at t = 0, goes to zero as t → ∞. Thus k

approaches k̂ (that is, the economy approaches the steady-state) asymptotically from
below if k0 < k̂, and from above if k0 > k̂. Hence the level k = k̂ is a stable equilibrium.

These results are of course in accord with the well-known findings of the previous
section based on a general neoclassical production function.

4 Convergence behaviour near steady-state

As the analysis of the previous section has shown, a central result of the Solow model of
economic growth is conditional convergence − that is, the farther an economy is below
its steady-state level, the higher will be its growth rate (other parameters equal). A
key question that arises as a consequence of this prediction is how long it takes for an
out-of-equilibrium economy to adjust to steady-state. The answer to this question is
pivotal because it determines whether transitional dynamics or steady-state behaviour
are important in the study of an economy’s time evolution. Transitional dynamics
are important if an economy takes a long time to adjust to steady-state, and steady-
state behaviour is important if the economy adjusts rapidly. For a variable X (t) which
evolves from an initial value X (0) = X0 towards a steady-state level X̂ , commonly
used measures of its speed of convergence can be classified into two types. First, those
derived with respect to X and, second, those derived with respect to lnX . Here we
refer to definitions of the first type as ordinary-variable (OV) based and those of the
second type as log-variable (LV) based. OV-based definitions of speed of convergence
include

Λ1X (t) = − Ẋ (t)
X (t)− X̂

, and (21)

Λ2X (t) = −dẊ
dX

, (22)

where Ẋ = dX/dt. Commonly used LV-based definitions of speed of convergence are

Λ3X (t) = −
d
[
lnX (t)

]
/dt

lnX (t)− ln X̂
, and (23)

Λ4X (t) = − d
d lnX

d
dt

(
lnX (t)

)
= −d(Ẋ/X )

d lnX
. (24)

Another measure closely related to the speed of convergence is the half-life of X (t).
Again there are two slightly different definitions, one OV-based and the other LV-based,
given by

1
2(X0 − X̂ ) = X (TX )− X̂ , and (25)

1
2(lnX0 − ln X̂ ) = lnX (TX )− ln X̂ , (26)

respectively, where TX and TX are used to denote half-life times obtained using the two
approaches.

The standard approach to studying properties of transitional behaviour is to derive
OV- or LV-based linear expansions in the neighbourhood of the steady-state. With the
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governing equations generally difficult to solve because of the non-linear form of the
production function, this approach usually yields equations that are straightforward to
solve. The solutions obtained this way are in exact analytical form and hence useful to
analyse the structural properties of transitional dynamics. Moreover, their linear form
makes them ideal for use in linear regression empirical tests.

The formulas (21)−(26) are usually applied to the linearised equations to calculate
speeds of convergence and half-life times in the neighbourhood of the steady-state. In
this context, all the definitions yield the same speed of convergence (and hence half-
life times) for both k(t) and y(t). For example, Romer (2001) has used definition (22)
while Barro and Sala-i-Martin (2004) have employed definition (24), and have found the
same speed of convergence for k(t) and y(t) near the steady-state. On the other hand,
Reiss (2000) has used definition (21) and found that, outside the vicinity of the steady-
state, k(t) and y(t) generally exhibit different convergence behaviours.5 Other authors
who have used definition (21) to analyse convergence behaviour include Ortigueira
and Santos (1997) in two-sector endogeneous growth models, and Steger (2006) in
R&D-based growth models, while Okada (2006) has used definitions (23) and (24) to
study convergence in a framework of the Solow model. Since the idea of the speed of
convergence is most useful for the study of out-of-equilibrium economies, the question
of whether the definitions provide consistent results outside the neighbourhood of the
steady-state is important. We consider convergence behaviour outside the vicinity of
the steady-state in the next section.

In this section, we analyse convergence behaviour near the steady-state. We conduct
a comparative study of convergence properties as predicted by the speed of convergence
and half-life time definitions (21)−(26). In section 4.1, working with a general produc-
tion function, we demonstrate that the different speed-of-convergence definitions arise
as a result of linearising with respect to different variables (OVs or LVs) and using dif-
ferent approaches to measuring convergence speed. All definitions are shown to yield
the same speed of convergence for both k(t) and y(t) near the steady-state. In an
appendix, we consider the question of how useful and reliable the widely used linear
expansion is. Using a Cobb-Douglas production function, we derive quadratic and
cubic log expansions and compare their performances against the exact solution with
that of the linear expansion. It is shown that, despite its being the least accurate in
quantitative terms, the linear log expansion is the most useful, for reasons explained in
the appendix.

4.1 Linear expansions

In this section, we show how linearising in terms of OVs leads to Λ1- and Λ2-type
definitions while linearising in terms of LVs leads to Λ3- and Λ4-type definitions. All
definitions are shown to yield the same speed of convergence for both y(t) and k(t) in
the neighbourhood of the steady-state.

5Reiss uses definition (21) throughout his analysis. Note that, as our study demonstrates below,

definition (24) is also a legitimate measure of the speed of convergence. It differs from the definition

(21) because, (i), it is LV-based while (21) is an OV-based measure and (ii), it measures speed through

a different mechanism. Moreover, since X and Ẋ are functions of time, Λ3 is also a function of time,

just like Λ1.
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4.1.1 Measuring speed of convergence

Both in terms of OVs and LVs, there are two different approaches to measuring the
speed with which the variable X (t)

(
or lnX (t)

)
is converging to its steady-state level

X̂ . The first is to measure the proportional rate at which the gap
∣∣X (t) − X̂

∣∣ (or∣∣ lnX (t)− ln X̂
∣∣) is decreasing. In effect, this approach defines the speed of convergence

as the growth rate of
∣∣X (t) − X̂

∣∣ (or
∣∣ lnX (t) − ln X̂

∣∣). It will become apparent that
the definitions Λ1 and Λ3 are based on this approach.

The second approach involves measuring the proportional rate at which the slope
of the X (t)

(
or lnX (t)

)
curve changes in time as X (t)

(
or lnX (t)

)
approaches X̂ (or

ln X̂ ). This approach defines the speed of convergence as the growth rate of Ẋ (t)(
or d

[
lnX (t)

]
/dt
)
. While speeds of convergence derived using the two approaches

are generally unequal (unless Ẋ is a linear function of X in the case of OV-based
definitions), they simplify to the same expression in the vicinity of X = X̂ . Moreover,
both OV-based and LV-based definitions yield identical expressions in the vicinity of
the steady-state.

4.2 Speed of convergence measures

For an economy characterised by a general production function, the Solow fundamental
equations that describe the time evolution of variables per unit of effective labour take
the form

y = f(k), (27)

k̇ = F(k) = sf(k)− (n + g + δ)k, (28)

ẏ = k̇f ′(k) = f ′(k)
[
sf(k)− (n + g + δ)k

]
, (29)

where f ′(k) = df/dk. The condition satisfied in the steady-state is given by

sf
(
k̂
)

= (n + g + δ)k̂. (30)

Valuable insight into the behaviour of the economy near the steady-state is usually
gained by approximating the governing equations using OV- or LV-based Taylor ex-
pansions. Linear expansions are the most commonly used.

To analyse behaviour predicted by the system (27)−(29) near the steady-state, we
first derive an OV-based linear expansion of equation (28), to get

d
dt

(
k − k̂

)
=

[
sf ′(k̂)− (n + g + δ)

]
(k − k̂)

= −

(
1− k̂f ′(k̂)

f(k̂)

)
(n + g + δ)(k − k̂)

= −
(
1− α

(
k̂
))

(n + g + δ)(k − k̂), (31)

where we have used (30) and the fact that kf ′(k)/f(k) = α(k) is capital’s share of
output. Since k̂ is time-independent, α is constant along the balanced growth path.
Dividing both sides of (31) by (k − k̂) reveals that the coefficient −(1− α)(n + g + δ)
is the growth rate of (k − k̂), that is, the proportional rate at which the gap (k − k̂)

12



k(t)
k(tp)

k̇(t)

k = k̂

k̇(tp) Slope of this line is

k̇(tp)/
[
k̂ − k(tp)

]
= −Λ1k(tp)

Slope of this tangent line is dk̇(tp)/dk = −Λ2k(tp)

Slope of this line = k̇/k = γk(tp)

Figure 3: Graphical illustration of the speed of convergence definitions Λ1 and Λ2 for a neo-
classical production function.

is decreasing in time. The negated growth rate of (k − k̂) is defined as the speed of
convergence of the variable k(t) onto k̂, denoted

Λ1k = (1− α)(n + g + δ) = −
d
(
k − k̂

)
/dt

k − k̂
. (32)

By noting that k−k̂ = ∆k and letting ∆k → 0 in the neighbourhood of the steady-state,
yields

lim
∆k→0

d(∆k)/dt

∆k
=

dk̇

dk
.

This is the proportional rate at which the slope of k(t) changes in time, and hence
provides an alternative approach to measuring the speed of convergence

Λ2k = −dk̇

dk
. (33)

Therefore Λ2 = Λ1 in the vicinity of the steady-state level. Away from the steady-state,
Λ1(tp) measures the (negative) slope of the straight line joining

[
k(tp), k̇(tp)

]
and (k̂, 0)

in the phase plane, while Λ2(tp) measures the instantaneous slope of k̇ at time t = tp,

that is, the growth rate of k̇. A graphical illustration is shown in figure 3.
To linearise the output equation (29), first note that

∂

∂y
=

∂

∂f(k)
=

1
f ′

∂

∂k
. Thus we have

d
dt

(
y − ŷ

)
=

{
sf ′(k̂)− (n + g + δ) +

f ′′(k̂)

f ′(k̂)
F(k̂)

}(
y − ŷ

)
,

and since F(k̂) = sf(k̂)− (n + g + δ)k̂ = 0, this becomes

d
dt

(
y − ŷ

)
=

[
sf ′(k̂)− (n + g + δ)

]
(y − ŷ)

= −
(
1− α

(
k̂
))

(n + g + δ)(y − ŷ). (34)

13



Comparing this equation with (31) indicates that OV-based linear Taylor expansions
yield identical evolution equations for output and capital in the neighbourhood of the
steady-state.

Next, we consider LV-based linear expansions. As mentioned earlier, LVs are widely
used in empirical analyses because they can lead to linear equations. Moreover, coeffi-
cients of explanatory LVs in linear equations have an economic interpretation − they
give the elasticity of the dependent OV with respect to the particular explanatory OV.
It is thus very common to derive LV-based linear expansions to study behaviour near
steady-state. We demonstrate how these expansions lead to the Λ3- and Λ4-definitions.
Dividing equation (28) by k gives a differential equation for ln k(t)

k̇

k
=

d
dt

[
ln k(t)

]
= H(k) = s

f(k)
k

− (n + g + δ). (35)

Then, in linearising this equation with respect to ln k(t), it is convenient to use the

chain-rule formula
∂

∂ ln k
= k

∂

∂k
to differentiate the terms on the right hand side, and

we obtain

d
dt

[
ln k̂ +

(
ln k − ln k̂

)]
= s

(
f ′(k̂)−

f
(
k̂
)

k̂

)(
ln k − ln k̂

)
d
dt

(
ln k − ln k̂

)
= −

(
1− k̂f ′(k̂)

f(k̂)

)(
n + g + δ

)(
ln k − ln k̂

)
= −

(
1− α

(
k̂
))

(n + g + δ)(ln k − ln k̂). (36)

From this equation, the (negated) proportional rate at which the gap
(
ln k−ln k̂

)
= lnK

decreases is given by

Λ3k = (1− α)(n + g + δ) = −
d
(
ln k − ln k̂

)
/dt(

ln k − ln k̂
) . (37)

This expression is the log-based counterpart of Λ1. It can be written in the form

Λ3k = −
d
[
ln(k/k̂)

]/
dt

ln(k/k̂)
= − d

dt

[
ln
(
lnK

)]
,

which shows that the Λ3k measure is the negated growth rate of lnK. The last term in
(37) can be written as

−
d
[
∆ ln k

]
/dt[

∆ ln k]

and, in the limit ∆ ln k → 0, this yields

Λ4k = −
∂
[
d(ln k)/dt

]
∂ ln k

= − d
dt

[
ln(k̇/k)

]
= − d

dt

[
ln γk(t)

]
. (38)

This shows that the Λ4k definition measures the negated ‘growth rate of the growth
rate’. Hence Λ4 = Λ3 in the vicinity of the steady-state k = k̂. Far from steady-state,
Λ3k(tp) gives the slope of the straight line joining the points

[
ln k(tp), d

dt

[
ln k(tp)

]]
14



ln k(t)ln k(tp)

d
dt

[
ln k(t)

]

ln k = ln k̂

Slope of this line is(
k̇/k

)
/
[
ln k̂ − ln k

]
= −Λ3k(tp)

Slope of this tangent line is d
(
k̇/k

)
/d ln k = −Λ4k(tp)

Figure 4: Graphical illustration of the speed of convergence definitions Λ3 and Λ4 for a neo-
classical production function.

and
[
ln k̂, 0

]
while Λ4k(tp) measures the instantaneous slope of the d

dt

[
ln k(t)

]
curve at

time t = tp. The situation is illustrated in figure 4 which shows a phase diagram for
the equation (35). Notice that, while for the associated OV-based equation (28), the
function F(k) is concave down because F ′′(k) = sf ′′(k) < 0, for the LV-based equation
(35), the function H(k) is monotone decreasing because

∂H
∂ ln k

=
sf(k)

k

(
α(k)− 1

)
< 0.

Use of L’Hopital’s rule shows that lim
k→0

H(k) = ∞ while lim
k→∞

H(k) = −(n + g + δ),

implying that H(k) is concave up. The properties of the functions F and H are thus
qualitatively different, and this means that we can expect inconsistencies between OV-
based and LV-based results, especially far from steady-state. Analysis of convergence
behaviour far from steady-state will be presented in section 5.

Log-linearising the output equation (29) requires the use of the formula
∂

∂ ln y
=

∂

∂ ln f(k)
=

f

f ′
∂

∂k
, and yields

d
dt

[
ln ŷ +

(
ln y − ln ŷ

)]
=

{(
f ′′
(
k̂
)

f ′
(
k̂
) − f ′

(
k̂
)

f
(
k̂
) )F(k̂)+ F ′

(
k̂
)} (

ln y − ln ŷ
)

=
[
sf ′(k̂)− (n + g + δ)

](
ln k − ln k̂

)
d
dt

(
ln y − ln ŷ

)
= −

(
1− α

(
k̂
))

(n + g + δ)(ln y − ln ŷ), (39)

where the relation ŷ = f
(
k̂
)

has been used. Thus the LV-based linear expansions also
give identical evolution equations for capital and output.

While evolution equations derived in terms of LVs generally have different properties
to those derived in terms of OVs, it can be shown that the LV- and OV-based linear
expansions are equivalent in the neighbourhood of the steady-state. Using the property
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lnx ' (x − 1) around x = 1, we can write ln k − ln k̂ ' k/k̂ − 1 near k = k̂, and the
equation (36) can be expressed as

d
dt

[
k/k̂ − 1

]
' −(1− α)(n + g + δ)(k/k̂ − 1)

which is the same as the OV-based equation (31), for example.

Thus all four definitions of the speed of convergence yield the same value in the
vicinity of steady-state, for capital and output. The expression (1 − α)(n + g + δ)
implies that the speed of convergence is negatively related to α and positively related
to n, g, and δ. The speed of convergence in this regime is independent of both the
saving rate and the actual distance of the economy from steady-state.

5 Convergence behaviour far from steady-state

The conventional approach to studying transitional behaviour is first to linearise or
log-linearise about the steady-state, as demonstrated in the previous section. However,
measures derived using this approach are not applicable far from steady-state, and
yet convergence information is most useful in the study of economies far from steady-
state. Studies that analyse convergence measures far from steady-state are limited.
They include the work of Reiss (2000) who has employed the OV-based Λ1-definition
and found different convergence behaviours for capital and output. In this section,
we extend this analysis and study the predictions of all the OV-based and LV-based
measures introduced in section 4. Using a Solow model characterised by a Cobb-Douglas
production function, we calculate expressions for the speed of convergence using the
Λ1-, Λ2-, Λ3- and Λ4-definitions. We demonstrate that the OV-based measures give
unequal speeds of convergence for capital and output far from steady-state. The LV-
based measures give equal speeds of convergence for capital and output even far from
steady-state. We compare the OV-based and LV-based definitions of half-life times of
convergence. The OV-based and LV-based definitions represent the times at which the
variable X is equal to the arithmetic and geometric mean of X0 and X̂ , respectively.

5.1 Speed of convergence

It is convenient to begin by stating the evolution equations of k(t) and y(t) applicable
in this case, given by

k̇ = B(k) = skα − (n + g + δ)k, (40)

ẏ = D(y) = αsy2− 1
α − α(n + g + δ)y. (41)

As already noted, in this case the exact solutions are known, and hence the exact values
of convergence parameters can be found even outside the vicinity of the steady-state.
We calculate expressions of speed of convergence for capital and output based on the
Λ1-, Λ2-, Λ3- and Λ4-definitions.
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The Λ1-definition gives the following speeds of convergence

Λ1k =
k̇

k̂ − k
=

γk(t)(
1
K − 1

)
= (n + g + δ)

(Kα−1 − 1)(
1
K − 1

) (42)

Λ1y =
ẏ

ŷ − y
=

αγk(t)(
1
Y − 1

)
= α(n + g + δ)

(Kα−1 − 1)(
1
Kα − 1

) (43)

where K = k/k̂, Y = y/ŷ and Y = Kα. We remark that the final line of (43) is the
same as the expression presented by Reiss (2000). The Λ2-definition gives the following
speeds of convergence

Λ2k = −dk̇

dk
= (1− α)(n + g + δ)− αγk(t)

= (n + g + δ)(1− αKα−1) (44)

Λ2y = −dẏ

dy
= (1− α)(n + g + δ) + (1− 2α)γk(t)

= (n + g + δ)
[
α + (1− 2α)Kα−1

]
. (45)

Notice that in terms of LVs the evolution equation for ln y(t) is α(t) times the evolution
equation of ln k(t) in general. In the Cobb-Douglas case, α is constant at all times,
and hence the evolution equations of ln y(t) and ln k(t) are essentially the same, so that
Λ3y = Λ3k and Λ4y = Λ4k. Thus we have

Λ3y = Λ3k = −
(
k̇/k

)
ln k(t)− ln k̂

= −γk(t)
lnK

= −(n + g + δ)
(Kα−1 − 1)

lnK
(46)

Λ4y = Λ4k = −
d
(
k̇/k

)
d ln k

= −dγk(t)
d ln k

= (1− α)(n + g + δ) + (1− α)γk(t)

= (1− α)(n + g + δ)Kα−1, (47)

The last line of (47) is the same as the expression presented in Barro and Sala-i-Martin
(2004).6

Since γk(t) → 0 and K → 1 as the economy approaches steady-state, the formulas
(42)−(47) show that all the definitions of speed of convergence give λ = (1 − α)(n +
g + δ) in the steady-state − in agreement with the findings of section 4.7 Outside the

6Barro & Sala-i-Martin (2004), page 78.
7While showing this result is straightforward for the other cases, Λ1k,y and Λ3k require the

use of L’Hopital’s rule. lim
K→1

Λ1k = (n + g + δ) lim
K→1

(α− 1)Kα−2

−K−2
= λ, lim

K→1
Λ1y = α(n + g +

δ) lim
K→1

(α− 1)Kα−2

−αK−α−1
= λ, lim

K→1
Λ3k = −(n + g + δ) lim

K→1

(α− 1)Kα−2

K−1
= λ.
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Figure 5: Speeds of convergence Λ1, Λ2, Λ3 and Λ4 plotted against K for α = 1
3 and α = 3

4 .

The curve of the speed of convergence near the steady-state, λ, is also shown (horizontal) for
comparison. In all cases n = 0.01, g = 0.02 and δ = 0.05.

neighbourhood of the steady-state, in addition to the parameters α, n, g and δ, the
speeds of convergence are shown to depend also on the economy’s growth rate. For
example, Λ4k(t) = λ+(1−α)γk(t) is larger than λ when γk > 0, that is, if the economy
is below the steady-state. Since, in this case, γk increases with distance from K = 1,
the farther an economy is below the steady-state, the higher the Λ4k measure. Above
the steady-state, γk < 0 and approaches −(n + g + δ) as K → ∞. Thus, Λ4k will be
less than λ in this case. It will decrease with distance from K = 1, approaching 0 in
the limit K →∞.

Figures 5 and 6 show how speeds of convergence Λ1, Λ2, Λ3 and Λ4 vary with K
and α, respectively.

OV-based definitions: For all values of α, the Λ1k and Λ2k speeds of convergence
are less than λ whenever K < 1 and higher than λ if K > 1. Thus, economies
that evolve from below their steady-state begin with small values of Λ1k and Λ2k,
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Figure 6: Speeds of convergence – – - Λ1, - - - Λ2, · · ·Λ3 and –·–·– Λ4 plotted against α for
K = 0.2 and K = 2. In each case, the curve of the speed of convergence near the steady-state,
λ, is also shown (solid) for comparison. In all cases n = 0.01, g = 0.02 and δ = 0.05.

which then increase towards λ as the economy converges to steady-state.

The Λ1y and Λ2y measures are less than λ if K < 1 and higher than λ if K > 1,
provided 1

2 < α < 1. When α = 1
2 , ẏ is a linear function of y and hence the speed

of convergence of y is constant at all times, given by Λ1y = Λ2y = α(n+g+δ) = λ.
For 0 < α < 1

2 , the measures Λ1y and Λ2y are larger than λ when K < 1 and less
than λ when K > 1.

The properties of the OV-based measures are driven by the concavity of the
functions B(k) and D(y) in equations (40) and (41), respectively. While B(k)
is concave down for all 0 < α < 1, the function D(y) is concave up, a straight
line, or concave down whenever 0 < α < 1

2 , α = 1
2 or 1

2 < α < 1, respectively.
Consequently, whenever α is outside the interval 1

2 < α < 1, capital and output
exhibit different convergence behaviours in the OV-frame. As the economy evolves
to the steady-state from above, for example, Λ1k and Λ2k decrease towards λ while
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Λ1y and Λ2y increase towards λ.

LV-based definitions: For all values of α, the LV-based speeds of convergence are
higher than λ whenever K < 1 and slower than λ when K > 1. For economies that
start with K > 1, and hence are converging from above, the LV-based speeds of
convergence are slower than, and gradually increase towards λ as the economies
tend to their steady-states. In this case, the functions that determine the evolu-
tion of ln y(t) and ln k(t) are concave up for all values of α.

The graphs in figures 5 and 6 show that speeds of convergence generally possess a
negative relationship with α, that is, the higher the values of α the lower the convergence
speeds. The absolute deviations (errors) between the exact speeds of convergence and
λ are shown to be generally smaller for the measures based on the proportional rate of
decrease of the gap (k−k̂)

(
or (ln k−ln k̂)

)
than for those based on the proportional rate

of change of the slope of k
(

or ln k
)
. Thus, as the economy evolves to the steady-state,

the quantities |Λ1 − λ| and |Λ3 − λ| are always smaller than |Λ2 − λ| and |Λ4 − λ|.
Figure 7 shows how the proportional approximation error of using λ varies with α.

It shows that the proportional deviations from λ are also smaller for Λ1 and Λ3 than
for Λ2 and Λ4. Proportional deviations for capital are largest (in absolute terms) as
α → 0 and smallest as α → 1, in the LV-frame. In the OV-frame, the proportional
deviations are largest as α → 1 and smallest as α → 0. For output, in the OV-frame,
the proportional deviations are shown to be smallest around α = 1

2 and maximal in the
limits α → 0 and α → 1.

A weakness of the Λ2 definition is that, away from the neighbourhood of the steady-
state, it can give negative values of speed. Convergence speeds Λ2k are negative when-
ever (1− αKα−1) < 0, and Λ2y values are negative whenever

[
α− (2α− 1)Kα−1

]
< 0.

The reason for this is that, geometrically, Λ2k is the (negative) instantaneous slope of
the k̇ curve on the phase plane (k, k̇), and takes on negative values whenever the curve
is up-sloping (see illustration in figure 3). Negative speeds of convergence are mislead-
ing because they give the (wrong) impression that the economy is evolving away from
its steady-state level. Consequently, for the rest of the analysis here, we focus on the
Λ1, Λ3, and Λ4 definitions.

The foregoing analysis has demonstrated that, whereas all speed of convergence
definitions yield the same value for both k(t) and y(t) near the steady-state, different
definitions generally give different speeds of convergence far from steady-state. The
differences are essentially caused by changes in the concavity of the function (that
occur as a result of expressing in terms of different variables) that determines the time
evolution of the system in the phase plane. Whenever this function is concave up,
speeds of convergence are higher than λ to the left of K = 1, and slower than λ to the
right of K = 1. This can be explained using the graphical illustrations of the speeds of
convergence, shown in figures 3 and 4. Consider the line whose (negative) slope gives
Λ3k in figure 4, for example. Call this line `Λ3k, say. Since the evolution function is
concave up, `Λ3k will always lie above the curve. This means, to the left of K = 1, `Λ3k

will be steeper than the gradient of the curve at K = 1, while to the left, `Λ3k will be
flatter. Since the (negative) slope of the gradient at K = 1 equals λ, whenever `Λ3k is
steeper then Λ3k > λ and if `Λ3k is flatter then Λ3k < λ. The reverse happens if the
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Figure 7: Proportional error — Λ1/λ − 1, –·–·– Λ2/λ − 1, - - -Λ3/λ − 1 and · · ·Λ4/λ − 1
plotted against α for K = 0.2 and K = 2. In all cases n = 0.01, g = 0.02 and δ = 0.05.

curve is concave down, and then speeds of convergence are lower than λ to the left of
K = 1, and higher than λ to the right of K = 1.

5.2 Half-life times

Since the theoretically predicted length of time required by an economy to fully attain
its balanced growth equilibrium is infinity, it is conventional to use the notion of half-life
to compare convergence speeds. Short half-life times indicate high speeds of convergence
while long half-life times imply low speeds of convergence. There are two commonly
used definitions of the half-life, an OV-based definition and an LV-based one. We
derive expressions for half-life times of y(t) and k(t) based on these definitions, and
then discuss their properties.

In terms of OVs, the half-life is defined as the time it takes for the gap
(
k − k̂

)
to

decrease by half. Finding the half-life Tk involves solving the equation

1
2(k0 − k̂) = k(Tk)− k̂,
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which can be written as
k(Tk) = 1

2(k̂ + k0), (48)

or
K(Tk) = 1

2(1 +K0). (49)

The equation (48) says that Tk marks the time at which k(t) equals the arithmetic
mean of k0 and k̂.

In terms of logarithmic variables, the half-life is defined as the time it takes for the
log distance

(
ln k − ln k̂

)
to be halved. We use Tk to denote half-life times derived in

this way. The condition satisfied by Tk is

1
2(ln k0 − ln k̂) = ln k(Tk)− ln k̂,

which yields

k(Tk) =
√

k̂k0, (50)

and hence
K(Tk) =

√
K0. (51)

Equation (50) indicates that the log version of half-life corresponds to the time at which
k(t) equals the geometric mean of k0 and k̂.

Consequently, the two approaches will generally give different values of the half-life.
However, noting that

√
K0 ' 1

2(1 +K0) in the neighbourhood of K0 = 1 shows that, in
the vicinity of the steady-state, half-life times obtained using the two approaches will
be comparable. From the equations (31) and (36), the evolution paths of economies in
the vicinity of k = k̂, are given by

k(t)− k̂ = e−λt(k0 − k̂), and (52)

ln k(t)− ln k̂ = e−λt(ln k0 − ln k̂), (53)

in the two frames, respectively. Substituting (52) and (53) into the equations (49) and
(51), respectively, yields

T̃ = 1
λ ln 2 (54)

in both cases. Hence, for economies that evolve from within the neighbourhood of k = k̂

(that is K0 ∼ 1), the half-life is independent of the initial distance from steady-state,
but depends only on λ.

For economies evolving from outside the neighbourhood of the steady-state, the
expressions (52) and (53) are no longer applicable and we use the exact solutions (16)
and (17) to compute the half-life times.

First, substituting (16) into the OV-based definition (49) gives[(
1− e−λTk

)
+K1−α

0 e−λTk

] 1
1−α = 1

2(1 +K0),

from which the half-life time is given by8

Tk =
1
λ

{
ln
∣∣∣K1−α

0 − 1
∣∣∣− ln

∣∣∣[1
2

(
K0 + 1

)]1−α
− 1
∣∣∣} . (55)

8See appendix for the complete solution.
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Similar calculations for y(t) give

Ty =
1
λ

{
ln
∣∣∣K1−α

0 − 1
∣∣∣− ln

∣∣∣[1
2

(
Kα

0 + 1
)] 1

α
−1
− 1
∣∣∣} , (56)

which is generally unequal to (55) except when K0 = 1. The half-life time expression
(56) has previously been established by Reiss (2000).

Substituting (16) into the LV-based definition (51) and solving for Tk gives9

Tk =
1
λ

ln
(
K

1
2
(1−α)

0 + 1
)
, (57)

and we have Tk = Ty in this case.
Again, along the balanced growth path where K0 = 1, all formulas (55)−(57) con-

verge to the half-life of T̃ = 1
λ ln 2 as predicted by the linear Taylor expansions.

Away from K0 = 1, the half-life times depend on both λ and K0, and the times given
by (55), (56), and (57) are then significantly different. The variations of Tk, Ty and Tk

with K0 and α are illustrated graphically in figures 8 and 9. We compare half-life times
obtained in the two frames for k(t) and y(t).

OV-based half-life times: For economies that start below their steady-states, the
half-life times Tk are longer than T̃ , irrespective of the value of α − and vice
versa is true for K0 > 1.

For output, provided 0 < α < 1
2 , the half-life times Ty are shorter than T̃ if

K0 < 1 and longer if K0 > 1. When α = 1
2 , the half-life Ty = T̃ irrespective of

the value of K0. When 1
2 < α < 1, the situation is the reverse of the case when

0 < α < 1
2 .

LV-based half-life times: In this case, the half-life times Ty = Tk are shorter than
T̃ whenever K0 < 1 and longer if K0 > 1.

We remark that the OV-based and LV-based half-times give results that are consistent
with the OV-based and LV-based definitions of speed of convergence, respectively.
For example, OV-based definitions gives slower speeds of convergence Λ1,2k than
λ whenever K0 < 1. This means, in the OV-based frame of reference, an economy
approaching steady-state from below actually takes longer than predicted by λ − and
hence Tk > T̃ . In the LV-based frame, however, Λ3,4k > λ whenever K0 < 1 implying
that the economy takes a shorter time to converge than predicted by λ. Hence the
half-life times Tk < T̃ .

5.3 Discussion

Our analysis has demonstrated that definitions of the speed of convergence and half-life
times can be derived in either an OV-based frame or an LV-based frame. It has been
shown that all definitions give the same speed of convergence λ = (1 − α)(n + g + δ)
and half-life T̃ = 1

λ ln 2 in the neighbourhood of the steady-state.

9See the appendix for complete solution.
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Figure 8: Half-life times for k (on the left) and y (· · · Ty = Tk, –·–·– Tk, Ty) plotted as functions
of K0 for α = 1

3 and 3
4 . The curve of T̃ , is also shown (solid) in each case for comparison. In all

cases n = 0.01, g = 0.02 and δ = 0.05.

Far from the steady-state however, convergence properties derived in the two frames
are generally inconsistent. We have used the case of a Cobb-Douglas production func-
tion to demonstrate that OV-based measures generally yield different speeds of con-
vergence and half-life times for output and capital. Provided 1

2 < α < 1, speeds of
convergence for output and capital are slower than, and increase towards λ if the econ-
omy is evolving from below the steady-state, and are faster than, and decrease towards
λ if the economy evolves from above. When 0 < α < 1

2 , the convergence measures
for output and capital are shown to exhibit opposite evolution trends as the economy
approaches the steady-state.

An advantage of the LV-based frame is that, for any value of α, the convergence
measures for output and capital are always equal. For economies below steady-state,
speeds of convergence are shown to be faster than λ, and decrease towards λ as the
economy approaches steady-state. Above steady-state, speeds of convergence are slower
than λ, and increase towards λ as the economy approaches steady-state.

Therefore, far from steady-state, measures of convergence derived in the OV-based
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frame generally yield different results to those derived in the LV-based frame.

6 Empirical implications

A key implication of exogenous growth models is conditional convergence. There have
been numerous empirical studies aimed at testing the hypothesis of conditional con-
vergence against the data. Based on equations derived by log-linearising about the
steady-state, these studies typically assume that the speed of convergence exhibited by
economies is constant and independent of the distance from steady-state. The theoret-
ical analysis of the preceding sections, however, has indicated that, except in the close
vicinity of steady-state, the speed of convergence depends on both the output-capital
elasticity and the economy’s distance from its steady-state. Moreover, economies ap-
proaching steady-state from below have been predicted to have faster (than λ) LV-based
speeds of convergence while economies approaching from above have slower speeds of

25



convergence.
In this section, we consider the empirical implication of the preceding analysis.

In the next section, we will test these implications. Our empirical work builds upon
the approach introduced by Mankiw, Romer and Weil (1992) (referred to as MRW
henceforth) and extended by Cho and Graham (1996) and Okada (2006). We test the
hypothesis that economies converging from below have higher speeds of convergence
than those converging from above. Using the data set of MRW, we split the sample into
two groups based on whether an economy was above or below their predicted steady-
state in 1960. We then perform a nonlinear regression that allows us to test whether
speeds of convergence are significantly different between the two groups. Our results
show that the hypothesis is supported by the data.

6.1 The Augmented Solow model

6.1.1 The model

Following MRW, we adopt a Cobb-Douglas production function which incorporates
human capital and takes the form

Y = KαHβ(AL)1−α−β , 0 < α + β < 1, (58)

where H is the human stock of capital and all other variables are defined as before. If sk

and sh are the fraction of output invested in physical and human capital, respectively,
and human capital is assumed to depreciate at the same rate as physical capital, then
the economy evolves according to

y(t) =
[
k(t)

]α[
h(t)

]β
, (59)

k̇(t) = sky(t)− (n + g + δ)k(t), (60)

ḣ(t) = shy(t)− (n + g + δ)h(t), (61)

where h = H/(AL). Eliminating y between the equations (60) and (61) shows that
human capital and physical capital satisfy the equation

d
dt

(
k(t)
sk

− h(t)
sh

)
= −(n + g + δ)

(
k(t)
sk

− h(t)
sh

)
(62)

the solution of which, is

k(t)
sk

− h(t)
sh

= e−(n+g+δ)t

(
k0

sk
− h0

sh

)
. (63)

This expression indicates that, at steady-state, the condition

k(t)/sk = h(t)/sh (64)

is satisfied irrespective of the initial levels of human capital (h0) and physical capital
(k0).

Under the assumption that the initial levels of human and physical capital are such
that is k0/h0 = sk/sh from the outset, it is possible to find an exact solution of the
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system (59)−(61).10 It is instructive to study this case because exact expressions of
quantities can be found even outside the vicinity of the steady-state. The time evolution
of output per effective unit of labour is given by

y(t) =
(

sh

sk

)β
{

k̂1−α−β
(
1− e−λht

)
+ k1−α−β

0 e−λht

} α+β
1−α−β

, (65)

where λh = (1 − α − β)(n + g + δ).11 The economy therefore evolves towards the
steady-state

ŷ =
(

sh

sk

)β

k̂α+β =

{
sα
ksβ

h

(n + g + δ)α+β

} 1
1−α−β

. (66)

The steady-state output per capita can be obtained from this expression by taking logs
and is given by

ln
Ŷ (t)
L(t)

= ln A0 + gt− α+β
1−α−β ln(n + g + δ) + α

1−α−β ln sk + β
1−α−β ln sh. (67)

Another equation involving steady-state output per capita can be derived by log-
linearising the differential equation for y(t) about the steady-state.12 The solution
of the linear log expansion can be expressed in the form

ln y(t)− ln y0 = θ
(
ln ŷ − ln y0

)
, (68)

where θ = 1−e−λht and λh is the speed of convergence near the steady-state. Expressing
in terms of per capita variables and combining with (67) gives

ln
Yt

Lt
−ln

Y0

L0
= gt+θ lnA0− α+β

1−α−β θ ln(n+g+δ)+ α
1−α−β θ ln sk+ β

1−α−β θ ln sh−θ ln
Y0

L0
,

(69)
where the left hand side is the growth of output per capita over the period (not an-
nualized). This framework, based on log-linearising about the steady-state, takes the
speed of convergence to be constant irrespective of the distance from, and the direction
of approach to, the steady-state. However, as our analysis in section 5 has shown, the
speed of convergence for economies converging from outside the vicinity of steady-state
is dependent on both the distance from and the direction of approach to steady-state.

For, consider the speed of convergence parameter Λ3 (introduced in section 4) which
can be expressed in the form

Λ3y(t) = −
d
[
ln
(
y/ŷ
)]/

dt

ln
(
y/ŷ
) = − d

dt

{
ln
(

ln
(
y/ŷ
))}

. (70)

Since the right hand side is an exact differential, (70) can be readily integrated and
rearranged to give

ln y(t)− ln y0 = Θ
(
ln ŷ − ln y0

)
, (71)

10See appendix for complete solution.
11Note that we use the notation λh = (1− α− β)(n + g + δ) to denote speed of convergence in the

augmented Solow framework, compared to λ = (1− α)(n + g + δ) in the framework of the traditional

Solow model.
12See appendix for derivation.
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where Θ = 1 − exp
{
−
∫ t

0
Λ3y(τ)dτ

}
. This expression (71) is to be compared with

(68) in which the speed of convergence is constant.
For the case under consideration (a Cobb-Douglas production function under the

assumption that k0/h0 = sk/sh from the outset), we can substitute the exact solution
for y(t) into (70) to obtain an analytical expression for Λ3y(t), namely

Λ3y(t) = − d
dt

{
ln

(
ln
[
1 + e−λht

(
K1−α−β

0 − 1
)] α+β

1−α−β

)}
. (72)

The equations (70) and (72) indicate that Λ3y(t) (and hence Θ), is generally a
function of time, approaching λh in the limit t →∞. Figures 10 and 11 show the time
evolution of Λ3y(t) and the relative error (Θ − θ)/θ, respectively, for economies with
α = 1

3 , starting from different initial levels.13 The value of α = 1
3 is conventionally

used within the framework of the traditional Solow model. For economies that begin
below/above their steady-states, the speeds of convergence Λ3y(t) are shown to be
initially faster/slower than, and decrease/increase towards λ in time. The rate at
which Λ3y(t) converges onto λ is shown to be higher for economies that start below
their steady-states compared to those that start from above.

Figures 12 and 13 show the time evolution of Λ3y(t) and the relative error (Θ−θ)/θ,

respectively, for economies with α = 2
3 . This value of the capital share is typical in the

framework of the augmented Solow model. The graphs show the behaviour of the
quantities Λ3y(t) and (Θ− θ)/θ in time to be qualitatively similar to that of the α = 1

3

case. The main differences are that, in this case, the relative errors are comparatively
lower14 and the development of Λ3y on both sides of steady-state appears to be fairly
symmetric.

These results mean that λ generally over-estimates the actual speeds of conver-
gence and hence the coefficient Θ for economies that approach steady-state from above.
Equally, the coefficient θ = 1− eλt will generally under-estimate its counterpart Θ for
economies that converge from below.

7 Convergence from both sides

In this section, we investigate whether economies that approach a steady-state growth
path from below have higher speeds of convergence than those that converge from
above. Our starting point will be the papers by Mankiw, Romer and Weil (1992) and
Cho and Graham (1996). We use the method of Cho and Graham to identify countries
that may be converging from above, and then estimate the augmented Solow model by
nonlinear least squares, allowing a different rate of convergence for the countries that
converge from above. Our empirical test complements an alternative, more complex
approach developed by Okada (2006).

13Note: The initial positions relate to the predicted steady-state levels in 1960, and correspond to

10-, 25-, 50-, 75-, and 90-percentiles computed for the MRW sample.
14While the low relative errors are partly due to smaller initial deviations from the steady-state

predicted in this model, our calculations show that higher values of α, keeping everything else fixed,

generally lead to lower relative errors (see Appendix 9.2).
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The group of countries is the main, ‘non-oil’ sample used in MRW. For this group of
countries, we calculate whether output per worker was above or below the steady-state
level in 1960. To determine this, we first run the MRW growth regression

ln
Y85

L85
− ln

Y60

L60
= b0+b1(ln sk− ln(n+g+δ))+b2(ln sh− ln(n+g+δ))+b3 ln

Y60

L60
, (73)

based on equation (69). Here Y85 denotes output in 1985. Once the coefficients in (73)
have been determined, they are combined with (67) to derive an equation that gives
1960 steady-state per capita output levels.15 Notice that, since 1960 corresponds to
time t = 0, equation (67) yields

ln
Ŷ60

L60
= lnA60 + α

1−α−β (ln sk − ln(n + g + δ)) + β
1−α−β (ln sh − ln(n + g + δ))

= − 1
b3

[
b0 − gt + b1(ln sk − ln(n + g + δ)) + b2(ln sh − ln(n + g + δ))

]
,(74)

where the last expression is obtained by comparing (69) with (73), for which the co-
efficients have already been determined. Note that we have employed the widely used
a priori value of g = 0.02, corresponding to technical progress of 2% per year, in our
calculations. We are also imposing the theoretical restriction that the coefficients on
the investment, schooling and population growth terms sum to zero.

The steady-state output values, once found, can be compared with the observed
level of output per capita in 1960. We compute the ratio Y60 = Y60/Ŷ60 = y60/ŷ60, on
the basis of which the sample is split into two groups depending on whether Y60 ≤ 1
or Y60 > 1. This is close to the method adopted in Cho and Graham (1996). Okada
(2006) uses a related method.

When we adopt this approach, we find that 49 of the 98 countries are classified
as converging from above. This may seem surprising, but output per capita grew
at less than 2% a year over 1960-85 in a large number of countries.16 Under the
assumptions of the augmented Solow model, they must have been converging from
above, perhaps reflecting declines in investment, or increases in population growth.
Note that converging to a growth path from above does not imply strictly negative
growth in output per head, given the maintained assumption that the level of efficiency
is growing over time.

Now that we have classified the set of countries into ‘above’ and ‘below’ we can test
the theoretical implication that convergence is slower for countries converging from
above. Our starting point will be growth regressions of the form derived by MRW:

ln
Y85

L85
− ln

Y60

L60
= θ lnA60 + gt +

α

1− α− β
θ(ln sk − ln(n + g + δ))

+
β

1− α− β
θ(ln sh − ln(n + g + δ))− θ ln

Y60

L60

15Notice that this is the regression presented in table VI of MRW, and also shown in the first column

of Table 1 here.
16It might be thought that countries could be classified as converging from above whenever their

observed growth in output per capita is less than 2%. But this would create problems for our later

statistical analysis, since it amounts to selection based on the dependent variable, and would therefore

generate a bias.
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A key prediction of our theoretical analysis is that the parameter θ should be smaller in
absolute terms for countries converging from above, reflecting slower convergence. If we
create a dummy variable, dabove, that is equal to one for countries that are classified as
‘above’ and zero otherwise, we can rewrite the right-hand-side of the growth regression
in the following form:

gt+(1+γdabove)θ
[
b0 + b1(ln sk − ln(n + g + δ)) + b2(ln sh − ln(n + g + δ))− b3 ln

Y60

L60

]
(75)

where the theoretical prediction is that the new parameter γ < 0. This prediction is
easily tested by estimating the generalized model by nonlinear least squares.

First of all, we look at estimates for 1960-85. The data and sample are exactly
that used by MRW. In the first column of Table 1, we show a replication of the MRW
results based on their Table VI. In the second column, we show the outcome obtained
by using nonlinear least squares (NLS). The parameter γ is negative, as predicted, but
is significantly different from zero only at the 25% level.

It is possible that successfully detecting heterogeneity in convergence rates may
require a longer span of data. We therefore carry out a similar analysis for 1960-2000,
using data from version 6.1 of the Penn World Table (PWT) due to Heston, Summers
and Aten (2002). We first use the Cho and Graham method to classify countries as
converging from above, and then construct an updated version of the MRW regression.

Our output measure will be output per adult, using PWT data on output, and data
on adult population from the World Bank’s World Development Indicators. Since we
do not have data on the MRW schooling variable for 1985-2000, we use their measure
for 1960-85 as a proxy for the whole 1960-2000 period. Due to gaps in the PWT 6.1
data for the 1990s, we are missing data for 11 of the original 98 observations in MRW.17

In column 3 of Table 7, we show the results obtained for MRW’s growth regression,
estimated for 87 countries over 1960-2000. Then, in the final column, we report the NLS
estimates. In this case, γ is not only negatively signed, but also significant at the 5%
level. This supports the theoretical prediction that convergence from above is relatively
slow. Since the point estimate of γ is −0.436, the effect could be substantial. Taken
at face value, the point estimate implies that the value of θ for countries converging
from above is less than 60% of the value for countries converging from below. We can
reinforce this point by using the estimates to calculate convergence rates for the two
groups of countries. For those converging from below, the annual convergence rate is
calculated at 2.88%; for countries converging from above, the rate is roughly halved,
at 1.37%.

These results are subject to some familiar criticisms. First, equation (69) shows
the familiar point that output growth depends on the initial level of technology, A0.
This can lead to omitted variable bias if the unobserved variable A0 is correlated with
any of the regressors. Second, we assume that the rates of technical progress are
the same across economies (here, taken to be 2% per year). Third, we have used the
standard log-linearized framework, strictly valid only close to the steady-state, to study
behaviour away from equilibrium. A fourth and final criticism, especially relevant to

17These are Angola, the Democratic Republic of Congo, Germany, Haiti, Liberia, Myanmar, Sierra

Leone, Singapore, Somalia, Sudan, and Tunisia.
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our specific empirical tests, is that identifying examples of convergence from above is
not straightforward. In particular, our use of the Cho-Graham method assumes that
countries have remained above or below their steady-state growth paths throughout
the period. This will be unsatisfactory to the extent that some have changed sides.
Note, however, that many of these problems might work to hide the effect that we have
identified in the data.
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Growth regressions

Time period 60-85 60-85 60-00 60-00
Estimation OLS NLS OLS NLS
constant 2.46 2.45 3.29 3.56

(0.473) (0.836) (0.652) (1.12)
log(sk)− log(n + g + δ) 0.501 0.642 0.520 0.770

(0.082) (0.190) (0.094) (0.274)
log(sh)− log(n + g + δ) 0.235 0.336 0.332 0.453

(0.059) (0.114) (0.079) (0.194)
log(Y0/L0) -0.298 -0.397 -0.367 -0.513

(0.060) (0.121) (0.082) (0.184)
γ -0.302 -0.436

(0.246) (0.222)
g 0.025 0.016

(0.014) (0.007)

N 98 98 87 87
R2 0.48 0.49 0.53 0.54
α 0.48 0.47 0.43 0.44
β 0.23 0.24 0.27 0.26
λbelow 1.41% 2.02% 1.83% 2.88%
λabove 1.41% 1.30% 1.83% 1.37%

Table 1: The dependent variable is the log difference of either output per equivalent
adult (1960-85) or output per adult (1960-2000). Estimation is by ordinary least squares
(OLS) or nonlinear least squares (NLS). Standard errors in parentheses. The last two
rows of the Table indicate that convergence from above appears to be slower than
convergence from below, as the analysis earlier in the paper predicts.

8 Conclusions

This paper has made a number of contributions to the study of convergence behaviour
in exogenous growth models. We have investigated convergence away from the steady-
state, and discussed a number of ways of measuring the rate of adjustment, extending
the work of Reiss (2000). The analysis reveals that convergence rates are likely to be
heterogeneous in systematic ways. In particular, we showed that, for log-linearized
models of the kind commonly used in empirical work, rates of convergence are faster
for economies that converge from below than for economies that converge from above.
Using some straightforward modifications to cross-country growth regressions, we have
shown that there is some support for this prediction in the data.
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9 Appendix

9.1 Solution of the Solow equation

Starting with the Solow equation k̇ = skα − (n + g + δ)k, we divide through by kα to
get

k̇

kα
= s− (n + g + δ)k1−α.

Then, setting u = k1−α yields k̇/kα = u̇/(1− α), and the equation becomes

u̇ + (1− α)(n + g + δ)u = (1− α)s.

This is linear in u and the integrating factor is eλt, where λ = (1−α)(n + g + δ). Thus

d
dt

(
ueλt

)
= (1− α)seλt,

which integrates to
u = k1−α =

s

n + g + δ
+ C0e

−λt,

where C0 is a constant of integration. Use of the condition that k = k(0) = k0 at t = 0
yields C0 = k1−α

0 − s/(n + g + δ), and the particular solution is given by

k(t) =
[
k̂1−α

(
1− e−λt

)
+ k1−α

0 e−λt
] 1

1−α
. (76)

9.2 Higher-order Expansions

In this section, we compare linear, quadratic and cubic log expansions and find that
linear expansions are the most useful.

A common criticism of linear Taylor expansions is that their validity is strictly
limited only to within the close vicinity of the steady-state. One possible response
to this criticism is to include more terms in the expansions to increase the region of
validity. Using the case of a Cobb-Douglas production function, we derive quadratic
and cubic log expansions for the variable y(t), compare their performances with that
of the linear log expansion, and then discuss whether there are practical benefits of
higher-order expansions.

Starting with

ẏ/y = d
[
ln y(t)

]
/dt = G(y) = αsy1− 1

α − α(n + g + δ),

= α(n + g + δ)
(
Y1− 1

α − 1
)
, (77)

where, Y = y/ŷ, we have

y∂yG = (α− 1)(n + g + δ)Y1−1/α,

(y∂y)2G = 1
α(α− 1)2(n + g + δ)Y1−1/α,

(y∂y)3G = 1
α2 (α− 1)(n + g + δ)Y1−1/α,

The Taylor log expansion of (77) about y = ŷ is given by

d
dt

lnY = G(ŷ) + lnY
[
y∂yG

]
y=ŷ

+ 1
2 ln2 Y

[
(y∂y)2G

]
y=ŷ

+ 1
6 ln3 Y

[
(y∂y)3G

]
y=ŷ

+ · · · .

(78)
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Hence, the linear, quadratic and cubic log expansions are given by

L̇y(t) = −λLy(t), (79)

L̇y(t) = −λLy(t) + 1
2

(
1
α − 1

)
λL2

y(t), (80)

L̇y(t) = −λLy(t) + 1
2

(
1
α − 1

)
λL2

y(t)− 1
6

(
1
α − 1

)2
λL3

y(t), (81)

respectively, where Ly(t) = lnY = ln y(t) − ln ŷ, and λ = (1 − α)(n + g + δ). The
degree to which each of the expansions (79)−(81) can estimate the original equation
(77) is measured by how well the left-hand-side expressions approximate G(Y) in the
neighbourhood of Y = 1. Figure 14 shows graphs of G(Y) and the expansions.18 All
expansions are shown to be very accurate representations of G(Y) in the very close
vicinity of Y = 1. The interval in which the expansions are accurate generally increases
with α, and in fact all expansions collapse onto G(Y) in the limit α → 1.19

For 0 < α < 1, the linear expansion always has the smallest interval in which it
accurately reproduces G(Y). Outside this region, it under-estimates G(Y) on both sides
of Y = 1, but predicts the correct sign of G(Y) at all points. The usefulness of the
linear expansion very close to the steady-state is based on the fact that, when |Ly|
is very small, then |Ly| > |Ly|2 > |Ly|3 > · · · implying that good approximations of
(77) can generally be obtained by only considering terms linear in Ly. In this regime,
integrating (79) yields20

ln y − ln ŷ = e−λt
(
ln y0 − ln ŷ

)
(82)

which indicates that, in the close vicinity of the steady-state, the speed of convergence
of an economy (λ) depends only on α and not on the economy’s distance from its
steady-state. A form of this equation obtained by subtracting ln y0 from both sides is
widely used as a basis for growth regressions (e.g. Mankiw, Romer and Weil 1992).

As the distance from steady-state increases, |Ly| becomes large and then |Ly| <

|Ly|2 < |Ly|3 < · · · . In this case, the higher-order terms of the expansion become
significant. Thus, based on (80), the criterion |Ly| � 1

2

(
1
α − 1

)
|Ly|2 can be used as a

rough guide to determine when the linear expansion is a reasonable approximation. It
leads to

1
2

(
1
α − 1

)∣∣ ln y − ln ŷ
∣∣� 1. (83)

This shows that the interval in which the linear log approximation is reasonable is
directly proportional to α. For small values of α, the interval is generally small, and as
α → 1, the linear approximation provides good estimates in larger intervals around the
steady-state.

The quadratic log expansion gives accurate values of G(Y) in a wider interval than
the linear expansion. Moreover, in the region where the linear expansion provides
reasonable estimates, the quadratic expansion will yield even better estimates. Figures
15 and 16 show the percentage errors incurred by using the linear, quadratic and cubic

18We remark that a similar graph appears as figure 13.24 in Carlin and Soskice (2006).
19Note that lim

α→1
G(Y) = 0 and, in this limit, the model under consideration simplifies to the AK-

model which exhibits no transitional dynamics.
20See section 9.5 below for full solution.
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Figure 14: Graphs of the linear (−·−·−), quadratic (−−−), and cubic (· · · ) log expansions
of G(Y) plotted against Y for α = 1

3 and α = 2
3 . The curve of G(Y) is also shown (solid) for

comparison. In all cases (n + g + δ) = 0.08.

expansions to estimate G(Y) for α = 1
3 and α = 2

3 , respectively. It is shown that a
higher value of α generally leads to lower percentage errors for all values of Y.

The equation (80) can be solved and we obtain21

ln y − ln ŷ − 1
2

(
1
α − 1

)(
1− e−λt

)(
ln y0 − ln ŷ

)(
ln y − ln ŷ

)
= e−λt

(
ln y0 − ln ŷ

)
. (84)

This formula indicates that, in addition to α, an economy’s speed of convergence also
depends on its initial (log) distance from the steady-state. The predictions of ln y(t)
provided by (84) are compared with those provided by (82) in figure 17. For 0 <

Y0 < 1, both expansions under-estimate the actual growth rate of y(t), but the values
provided by the quadratic expansion are always superior to those given by the linear
approximation even for very small values of Y0. For example, with α = 1

3 , y0 = 1
10 and

ŷ = 1, the quadratic solution converges to the exact solution in about 60 years while
the linear solution converges after 100 years.

For values of Y > 1 (above the steady-state) however, the qualitative properties
of the quadratic expansion are fundamentally different from those of G(Y), which it
is meant to approximate. For, while G(Y) is a monotone decreasing function for all
Y > 0, the quadratic expansion is decreasing only in 0 < Y < Ymin = exp

(
α

1−α

)
.

Then, for Y > Ymin, the quadratic expansion is an increasing function, and equals
zero when Y = Yzero = exp

(
2α

1−α

)
. Thus, approximating G(Y) with a quadratic log

expansion introduces an extraneous unstable equilibrium at Y = Yzero. Economies that
start with Y0 > Yzero evolve in the right-ward direction towards Y = ∞ while those
that start in 1 < Y < Yzero evolve towards Y = 1. Economies that start in the range
Ymin < Y < Yzero do not satisfy the conditional convergence property because economies
farther from Y = 1 are shown to have lower growth rates (absolute values). Therefore,
although the performance of the quadratic expansion is clearly superior to that of the

21The full solution is presented in the appendix.
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linear formulation in 0 < Y < Ymin, the situation is different when Y > Ymin. Figure
17 shows, for example, an economy that starts just below Y = Yzero at Y0 = 2.7 (with
α = 1

3 , ŷ = 1, we have Yzero = e = 2.718 · · · ). The predictions given by the quadratic
expansion are shown to be clearly inferior to those obtained using the linear expansion.
The performance of the quadratic formulation is thus unsatisfactory in the regime
Y → Yzero and for Y > Yzero.

As a possible response to the foregoing issues, one might want to consider the cubic
log expansion (81). Figure 14 shows that the interval in which this expansion accurately
represents G(Y) is even wider than in the quadratic case and the cubic curve is monotone
decreasing just like G(Y). However, the concavity of the cubic expansion is opposite to
that of G(Y) to the right of Ymin. In this interval, the cubic curve is concave down while
G(Y) is concave up. This means that beyond a certain value of Y

(
= exp

(
2α

1−α

))
,

the cubic estimates will be worse than the linear ones. However, the main obstacle
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with regards to the cubic expansion is the fact that the resulting equations are fairly
difficult to solve. The obtained solutions are complicated and hence do not facilitate
any meaningful analysis of the transitional dynamics. For example, the solution of (81)
is [

lnLy − 1
2 ln

(
6− 3`Ly + `2L2

y

)
+ 1

5

√
15 tan−1

(√
15
[
− 1

5 + 2
15`Ly

])]t
0

= −λt,

where ` = 1
2

(
1
α − 1

)
.

In summary, the linear log expansions are the simplest to derive and yield linear
exact solutions that are well-suited for use in linear regression empirical tests. Away
from the vicinity of the steady-state, although these expansions generally yield the least
accurate estimates, their qualitative predictions are always consistent with those of the
basic governing equation. The linear evolution equation (82) has been shown to be
robust in the sense that, no matter how far from steady-state the economy starts, the
path predicted by this equation always converges to the exact solution after sufficiently
long times.

The quadratic log expansions improve on the linear approximation in 0 < Y < Ymin,

and give exact solutions which, even though nonlinear, are relatively simple enough and
can be estimated using nonlinear regression methods. However, a potentially serious
drawback of the quadratic formulation is that, for Y > Ymin, its predictions are incon-
sistent with those of the basic governing equation.

The main disadvantage of cubic (and higher-order) expansions is that the benefits
gained from the solutions of the resulting equations are generally outweighed by the
amount of effort required to derive them. When (if) the solutions are found, they are
usually too complicated to be of much use.

One assessment is that of Romer (2001), who has stated that “Taylor-series approx-
imations are generally quite reliable . . . for the Solow model with conventional produc-
tion functions.”22 Perhaps surprisingly, the analysis carried out here has demonstrated
that, for a Solow model with a Cobb-Douglas production, working in terms of LVs,
only the linear Taylor expansion is reliable in qualitative terms.

9.3 Derivations of half-life formulas

Derivation of formula (55)

Starting with [(
1− e−λTk

)
+K1−α

0 e−λTk

] 1
1−α = 1

2(1 +K0),

then raising both sides to the power of (1− α) and rearranging gives

e−λTk =

[
1
2

(
K0 + 1

)]1−α
− 1

K1−α
0 − 1

.

Taking logs on both sides then yields (55)

22Romer (2001), page 25.
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Derivation of formula (57)

In this case, we solve the equation[(
1− e−λTk

)
+K1−α

0 e−λTk

] 1
1−α =

√
K0,

for Tk. Raising both sides to the power of (1− α) and rearranging gives

e−λTk =
K

1
2
(1−α)

0 − 1
K1−α

0 − 1
=

K
1
2
(1−α)

0 − 1(
K

1
2
(1−α)

0 − 1
)(
K

1
2
(1−α)

0 + 1
)

=
1(

K
1
2
(1−α)

0 + 1
)

Finally taking logs on both sides gives (57).

9.4 Solution of Taylor expansions

9.4.1 Solution of linear expansion

Starting from L̇y(t) = −λLy(t), we separate variables and obtain

dLy

Ly
= −λdt.

Integrate from time 0 to time t to get

ln
(
Ly(t)
Ly(0)

)
= −λt.

Note that Ly(0) = ln y0−ln ŷ. Then, taking exponentials and rearranging yields ln y(t)−
ln ŷ = e−λt

(
ln y0 − ln ŷ

)
.

9.5 Solution of quadratic expansion

Starting from L̇y(t) = −λLy(t) + 1
2

(
1
α − 1

)
λL2

y(t), we factorise the expression on the
right hand side, separate variables, to get

dLy

Ly(1− `Ly)
= −λdt, (85)

where ` = 1
2

(
1
α − 1

)
. The left hand side can now be expressed in terms of partial

fractions as (
1
Ly

+
`

1− `Ly

)
dLy = −λdt.

Integrating from time 0 to time t then gives

ln

(
Ly(t)

[
1− `Ly(0)

]
Ly(0)

[
1− `Ly(t)

]) = −λt.

Finally, taking exponentials and rearranging leads to

Ly(t)− 1
2

(
1
α − 1

)(
1− e−λt

)
Ly(0)Ly(t) = e−λtLy(0),

from which (84) follows after expressing in terms of y(t).
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9.6 Derivations

9.6.1 Solution of Augmented Solow model

Using the equations (59) and (64), it is possible to decouple the differential equations
(59) and (64), to get

k̇ = sβ
hs1−β

k kα+β − (n + g + δ)k,

ḣ = sα
ks1−α

h hα+β − (n + g + δ)h.

Then, since k, h and y are related through h = (sh/sk)k and y = kαhβ , it is necessary
to solve only one of these equations. Following the procedure employed to derive (76),
the solution of the capital equation is

k(t) =

{
k̂1−α−β

(
1− e−λt

)
+ k1−α−β

0 e−λt

} 1
1−α−β

.

9.6.2 Log-linearising the y(t) equation

In the neighbourhood of the steady-state, the condition k/h = sk/sh always holds, and
the evolution equation for output can be expressed as

d
dt

[
ln y(t)

]
= R(y) = (α + β)sk

(
sk

sh

) β
α+β

y
1− 1

α+β − (α + β)(n + g + δ).

To derive the linear log expansion, first note that

ŷ
1

α+β
−1 =

sk

n + g + δ

(
sk

sh

) β
α+β

.

Then [
dR

d ln y

]
y=ŷ

=
[
y
dR
dy

]
y=ŷ

=

[
(α + β − 1)sk

(
sk

sh

) β
α+β

y
1− 1

α+β

]
y=ŷ

= −(1− α− β)(n + g + δ).

Hence

d
dt

[
ln ŷ +

(
ln y − ln ŷ

)]
=

[
dR

d ln y

]
y=ŷ

(
ln y − ln ŷ)

d
dt

(
ln y − ln ŷ

)
= −(1− α− β)(n + g + δ)

(
ln y − ln ŷ)
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